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Upper-bound problem for a rotating system 
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Recent work (Hunter & Riahi 1975) on nonlinear convection in a rotating fluid is 
extended to a multi-modal regime. The schematic multi-boundary-layer method of 
Busse (1969) and the upper-bound technique of Howard (1963) are used to obtain 
upper bounds on the Nusselt number N .  It is shown that there are infinitely many 
modes in the range Ta 4 R%, where Ta is the Taylor number and R is the Rayleigh 
number, and different types of mode optimize N in different regions of the parameter 
space (R, Ta). While the optimal N is independent of Ta  for T a  4 R, it is found 
that it increases with Ta in R < Ta < (Rlog R)3 and decreases as Ta increases in 
(R log R)# Q T a  < Rp, and that the functional dependence of the optimal N on R and 
Ta is continuous (within a logarithmic term) throughout the region of R, Ta  space. 

1. Introduction 
We consider the effect of rotation on convection between two rigid horizontal 

boundaries a t  large Rayleigh number. A further application of the upper-bound 
calculation extends the recent work of Hunter & Riahi (1975, henceforth referred to 
as I) to the multi-modal case. 

The multi-boundary-layer method was first used by Busse (1969). In  improving 
the upper bound on the heat flux, Busse considered a sequence of different boundary 
layers by adjusting the horizontal scale from its interior value to its boundary value. 
The thickness of each boundary layer was supposed to be large in comparison with the 
thickness of the following layer, and the convecting component of the heat flux was 
supposed to be approximately equal to the total heat flux in all but the last of the 
boundary layers, where it was of the order of the total heat flux. Later on, Chan (197 1, 
henceforth referred to as 11) used Busse's technique to study turbulent convection a t  
infinite Prandtl number, and obtained the preferred upper bound on the heat transport. 
Since then, this technique has been used by Busse & Joseph (1972), Gupta & Joseph 
(1973) and Chan (1974; henceforth referred to as 111) to study nonlinear convection. 
In all such studies, a schematic structure for all the modes was considered. Also, it  was 
assumed that higher modes have shorter length scales and that coupling among the 
different modes occurs only between the (n + 1)th and the nth mode in the nth boundary 
layer. 

A single-mode analysis of the present problem is performed in I. It is found that in 
the range R < Ta Q (R log R)3 there is a mode, referred to as the E-mode, which has 
a length scale of order Ta-4. The boundary-layer structure for the E-mode consists 
of a non-uniform interior, an Ekman layer of thickness (4lTa)t and an inner layer 
thinner than the Ekman layer. The thickness of the Ekman layer is found to be fixed 
and independent of the horizontal cell structure. Such a particular structure makes it 
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impossible to have an additional E-mode which has the schematic structure. In this 
paper, we find that, in order to preserve the schematic multi-boundary-layer structure 
in the above range of Ta, there must be infinitely many modes, called R-modes, which 
have the same structure as the ones in a weakly rotating system (11) and finitely many 
modes, called T-modes, which have the same structure as the ones in a strongly 
rotating system (111); furthermore, it  is shown that T-modes have no significant 
efiect on the optimization of N .  Thus only the effect of R-modes on maximizing N is 
considered. Whether there is a different kind of multi-boundary-layer structure having 
many E-modes is an unanswered question, but it is clear that, if there is such a non- 
schematic structure, it should have the property that all of its E-modes are coupled 
throughout the Ekman layer. The cellular structure [I, equation (2.16)] for the solu- 
tions and the possible physical interpretation of the modes as small scales of motion 
suggest that such a structure is physically improbable for the present problem. 

2. Multi-modal regime 
First we state the problem. The reader is referred to I and Riahi (1974) for details of 

the subject and the derivation of the equations. 
We consider an infinite horizontal layer of fluid of depth d bounded above and below 

by two rigid, perfectly conducting planes maintained at temperatures To and To + A T  
respectively.The fluid is rotating about the vertical with angular velocity a. Under the 
usual Boussinesq approximation and the assumption of infinite Prandtl number, the 
basic equations can be determined [I, equations (2.8), (2.9) and (2.14)]. We seek 
the maximum value of N subject to the constraints provided by these basic equations. 
From the Euler equations for the variational problem, we obtain our governing equa- 
tions [I, equations (2.19) to (2.21), where the subscript n is added to each variable]. 
These governing equations are then used to obtain multi-modal solutions. For further 
details on the mathematical analysis of the problem, the reader is referred to I1 and 111. 

2.1. The case Ta 4 R 

As in the single-mode case (I), rotational effects are unimportant so long as Tu 4 R. 
There are no significant differences between the solutions for this case and those for 
the non-rotating case (11). We refer to each of the modes for this case as an R-mode. 
Each R-mode (of wavenumber an) has three regions: the interior, the intermediate 
layer and the inner layer. The interior of each mode coincides with the inner layer of 
the previous mode. Coupling among the different modes occurs only between the nth 
and the (n - 1)th mode in the (n - 1)th boundary layer. It is assumed that 

Ta 4 a:, (1)  

(2) 6, < ... < 8, 4 l/an -g 8n-l -g ... 4 6, < I/a, as an-+m, 

where l/a, and 13, are the thicknesses of the intermediate and inner layers of the nth 
mode respectively, and S is the total number of R-modes. Using a formal multi- 
boundary-layer technique (11, § 5 ) ,  we find that there can be infinitely many R-modes. 
N is independent of Ta and increases with R. Chan (11) used a less formal approach 
t o  find the multi-modal solutions of the upper-bounding problem with no rotation and 
obtained the same qualitative results. However, in his result for N ,  he found a different 
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proportionality constant. This is partly due to his ignoring the contributions of the 
term R-4Xl0-' in the expression for N ,  and consequently the coefficient e-f does not 
appear in his equation (95) for the heat flux. 

2.2. The case R < Ta < (RlogR)) 

It is found in I that for this case there is a mode, referred to as the E-mode, which has 
a non-uniform interior (a combination of a uniform interior and a layer of thickness 
Tadla& as a; -+ Ta), an Ekman layer of thickness (4/Ta)i and an inner layer thinner 
than the Ekman layer. Also, it is shown that this inner layer has the same structure 
as the inner layer of the R-modes and has thickness 

6, K (Tad R log Ta)-*. 

Under what conditions can the number of modes be increased? From the informa- 
tion on the E-mode, we see that the Ekman layer is thicker than the inner layer, and 
that its thickness is fixed and independent of the horizontal cell structure when 

R < Ta < (R log R)%. (3) 

This clearly shows that the system has not more than one E-mode with the usual multi- 
boundary-layer structure. By assumption (1  ), we have the usual multi-boundary-layer 
structure and a, modes (in addition to the E-mode)exist which have the same structure 
as the R-modes. Chan's analysis for free boundaries (111) shows that there are infinitely 
many modes, called T-modes, when 

R* < Ta < R3 (4) 

and finitely many when R < Ta -g R*, (5) 

where in the latter range the number of modes increases as Ta increases. The structure 
of the 2'-modes is found to be independent of the boundary conditions so long as 

(RlogR)) < Ta 4 R$ (I, 111). (6) 

From I ,  for the case of rigid boundaries there is an Ekman layer outside the T-modes 
in the range (6). The structure of the interior of the E-mode is basically the same as 
that of a T-mode, and it turns out that we also have finitely many T-modes in the range 
(5). Each of these T-modes satisfies the relation 

a$ < Ta -g af. ( 7) 

The analysis for the range studied in Q 2.3 (though omitted in this paper) shows that 
assumption (7) is basic for the existence of a 2'-mode. It can be shown from (7), (18) and 
(19) that none of the T-modes can have a significant effect on the optimization of N in 
the range (3). 

To determine the total number of T-modes in the range (3), we use the condition 
Ta-a < 6, and equations (18) and (19) in $2.3. We find that, for R < Ta Q R8, there 
is no T-mode. For RB < Ta < RS, there is only one T-mode. In  general, if we ignore 
the logarithmic terms, a total of 1 T-modes exist when 

12( 1 - 2-2) 12( 1 - 2-24) 
RP < Ta < Rq, where p = 9-23-1 ' q = 9-22-1 
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for agiven R. We note that 1 increases with Ta in the range (5) and that, as Ta + Rt, 
1 -+ 00 and the lower and upper parts of the inequality (8) merge. It can be shown easily 
also that, for a given Ta, 1 is determined uniquely from (8). 

TO optimize N ,  we use the usual schematic multi-boundary-layer method and 
assume there are many R-modes in addition to the E-mode. We omit the analysis here 
since it is similar to that in 11. We obtain the following important results: 

0 

K = 1  
where n = 1, S is the total number of R-modes, 8, = gn/an is the thickness of the nth 

inner layer, 

1 = 1.1106, /3 = 0.4539, v = 0.2775. 

For a given Ta in the range (8 ) ,  the present analysis assumes that 

8, < qa, < ... Q 8, < qa, Q ... < l/ul < 8, Q Ta-a as a,+m, (14) 

where a, is the wavenumber for an R-mode. Using (8)-(10) and (14), we obtain the 
following results after neglecting the logarithmic terms. 

(i) For Ta in the range (5), there are infinitely many R-modes and finitely many 
T-modes. However, as Ta approaches O(R*), the number of R-modes rapidly decreases. 
When Ta = O(R*), S+ 0 and there are infinitely many T-modes. 

(ii) For sufficiently large R, S can be assumed to be large in the range (5), and we 
obtain the following forms for the optimal values of S and N :  

4 
N = 0.1855Rt {log Ta (log R4/Ta)-10'e)', r = 9 log (R*/Ta)' (16) 

Thus, for a given R in the range ( 5 ) ,  N increases as Ta increases. 
(iii) For R4 < T a  Q (Rlog R)%, there are infinitely many T-modes and no R-mode. 

However, the E-mode itself is sufficient to optimize N ,  and N has the same form as in 
the single-mode case [I, equation (3.56)]. 

2.3. The case (Rlog R)* Q Ta Q R8 

The effect of rigid boundaries is not important for this case. Thus there are no signi- 
ficant differences between the results for this case and those for free boundaries (111). 
We refer to each mode for this case as a T-mode. 
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Each T-mode has three regions: the interior, an intermediate layer of thickness 
Tatla: and an inner layer of thickness 13, = gn/an. The interior of each mode coincides 
with the inner layer of the previous mode. Coupling among the different modes occurs 
only between the nth and the (n- 1)th modes in the (n- 1)th boundary layer. In 
addition to the T-modes, there is an Ekman layer of thickness (4/Ta)*. It is assumed 
that 

where S is the number of T-modes. The assumption that the Ekman layer is thinner 
than the 8, layer is needed to adjust the solution to the boundary conditions. By 
making the assumption (7) and using the formal multi-boundary-layer technique, 
we find 

Ta-* < 8, < Tatla: < . . . < 8, < Tatla: as a, --f co, (17) 

n-1 

K = l  
a n n  = b Hl--3X2-"-') Ta&2'-"-1) n (log R2gK/Ta#)ZR-n-', (18) 

N = Ks[R8Ta-1 log (R#/Ta)]2(1-2-s) (4) W-1f2-8) 

K ,  = ( 2 1 ~ 2 )  24S+3(--1+2-8+') (2S+2 - 3)3X2-8-4. 

(20) 

bnt-1 - (2 , O < n < S - 1 ,  (21) 

(22) 

- 2n-#(1-2-") S+2 - 3)-1+3X2-n-e 

For sufficiently large R, S can be assumed to be large, and we find the following optimal 
values for S and N :  

(23) log 2 

N = 00052R3/Ta2. (24) 

1 
S = -  Clog log (R3/Ta)l, 

Equation (24) is essentially equivalent to that given by Chan (111) for free boundaries. 
However, he obtained a different proportionality constant, partly because he ignored 
the contributions of the terms ( T U ~ R - ~ ) ~ - '  and 

in his expression for the heat flux. 

3. Some remarks 
(i) An important improvement in our present solutions over the single-mode 

solutions is that here the functional dependence of N on R and Ta is continuous 
(within a logarithmic term) throughout the region of R, Ta space. 

(ii) Another important result of our present analysis is that rotation can increase 
the optimal N .  For free boundaries (111), it was found for a given R that the optimal N 
cannot be increased as Ta increases. 

(iii) If the effect of a rotational constraint is to stabilize the maximizing flow, then, 
the stronger the rotation, the more it will tend to suppress small scales of motion, and 
therefore we should have fewer modes. Here we find that there are infinitely many 
modes in the ranges (4) and (5), but it may be seen from (15) and (23) that as the 
rotation increases the number of modes decreases. 

(iv) The expressions (16) and (24) for N (with logarithmic terms neglected) are 



528 N .  Riahi 

consistent with the well-known dimensional argument that at large R the dimensional 
form of N should be independent of d. 

(v) As is discussed in I, the single-mode upper bound of the present problem agrees 
qualitatively with the experimental finding of Rossby (1969). However, this bound 
is larger than the available data, and is somewhat larger than Rossby’s observed 
values. Here w e  find that the single-mode upper bound is preferred in Rossby’s 
experimental regime while multi-modal upper bounds give correctly the preferred 
bounds for sufficiently large R for a given Tu. 
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